Hardoim, P. R. et al. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).
Google Scholar
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).
Google Scholar
Petrini, O. Fungal endophytes of tree leaves in Microbial Ecology of Leaves (eds. Andrews, J. H. & Hirano, S. S.) 179–197 (Springer, 1991).
Rodriguez, R. J., White, J. F. Jr., Arnold, A. E. & Redman, R. S. Fungal endophytes: Diversity and functional roles. New Phytol. 182, 314–330 (2009).
Google Scholar
Bamisile, B. S., Dash, C. K., Akutse, K. S., Keppanan, R. & Wang, L. Fungal endophytes: Beyond herbivore management. Front. Microbiol. 9, 544 (2018).
Google Scholar
Rodriguez, R. J. et al. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2, 404–416 (2008).
Google Scholar
Sun, C. et al. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J. Plant Physiol. 167, 1009–1017 (2010).
Google Scholar
Arnold, A. E. Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biol. Rev. 21, 51–66 (2007).
Google Scholar
Peterson, R. L. & Massicotte, H. B. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can. J. Bot. 82, 1074–1088 (2004).
Google Scholar
Wilson, D. Endophyte: The evolution of a term, and clarification of its use and definition. Oikos 73, 274 (1995).
Google Scholar
Stone, J. K., Bacon, C. W. & White Jr, J. F. An overview of endophytic microbes: Endophytism defined. in Microbial endophytes 3–29 (Bacon CW, White J, 2000).
Qian, X. et al. Leaf and root endospheres harbor lower fungal diversity and less complex fungal co-occurrence patterns than rhizosphere. Front. Microbiol. 10, 1015 (2019).
Google Scholar
Van Lê, A. et al. Ecophylogeny of the endospheric root fungal microbiome of co-occurring Agrostis stolonifera. PeerJ 5, e3454 (2017).
Google Scholar
Błaszczyk, L., Salamon, S. & Mikołajczak, K. Fungi inhabiting the wheat endosphere. Pathogens 10, 1288 (2021).
Google Scholar
Schwery, O. et al. As old as the mountains: The radiations of the Ericaceae. New Phytol. 207, 355–367 (2015).
Google Scholar
Meharg, A. A. & Cairney, J. W. G. Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. in Advances in Ecological Research vol. 30 69–112 (Elsevier, 1999).
Wang, B. & Qiu, Y.-L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299–363 (2006).
Google Scholar
Bradley, R., Burt, A. J. & Read, D. J. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature 292, 335–337 (1981).
Google Scholar
Hazard, C., Gosling, P., Mitchell, D. T., Doohan, F. M. & Bending, G. D. Diversity of fungi associated with hair roots of ericaceous plants is affected by land use. FEMS Microbiol. Ecol. 87, 586–600 (2014).
Google Scholar
Hamim, A. et al. Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems. C. R. Biol. 340, 226–237 (2017).
Google Scholar
Koizumi, T. & Nara, K. Communities of putative ericoid mycorrhizal fungi isolated from alpine dwarf shrubs in Japan: Effects of host identity and microhabitat. Microbes Environ. 32, 147–153 (2017).
Google Scholar
Zhang, Y. et al. Diversity of root-associated fungi of Vaccinium mandarinorum along a human disturbance gradient in subtropical forests, China. J. Plant Ecol. 10, 56–66 (2017).
Google Scholar
Yang, H. et al. Diversity and characteristics of colonization of root-associated fungi of Vaccinium uliginosum. Sci. Rep. 8, 15283 (2018).
Google Scholar
Newsham, K. K. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 190, 783–793 (2011).
Google Scholar
Lukešová, T., Kohout, P., Větrovský, T. & Vohník, M. The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants. PLoS ONE 10, e0124752 (2015).
Google Scholar
Rimando, A. M., Kalt, W., Magee, J. B., Dewey, J. & Ballington, J. R. Resveratrol, pterostilbene, and piceatannol in Vaccinium Berries. J. Agric. Food Chem. 52, 4713–4719 (2004).
Google Scholar
Brody, A. K. et al. Genotype-specific effects of ericoid mycorrhizae on floral traits and reproduction in Vaccinium corymbosum. Am. J. Bot. 106, 1412–1422 (2019).
Google Scholar
Rayner, M. C. Obligate symbiosis in Calluna Vulgaris. Ann. Bot. os-29, 97–98 (1915).
Google Scholar
Hou, L. W. et al. The phoma-like dilemma. Stud. Mycol. 96, 309–396 (2020).
Google Scholar
Fehrer, J., Réblová, M., Bambasová, V. & Vohník, M. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Stud. Mycol. 92, 195–225 (2019).
Google Scholar
Pearson, V. & Read, D. J. The biology of mycorrhiza in the ericaceae. II. The transport of carbon and phosphorus by the endophyte and the mycorrhiza. New Phytol. 72, 1325–1331 (1973).
Google Scholar
Zhang, Y.-H.Z. Phylogenetic relationships of some members in the genus Hymenoscyphus (Ascomycetes, Helotiales). Nova Hedwig. 78, 475–484 (2004).
Google Scholar
Vrålstad, T., Fossheim, T. & Schumacher, T. Piceirhiza bicolorata – the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate?. New Phytol. 145, 549–563 (2000).
Google Scholar
Vohník, M., Figura, T. & Réblová, M. Hyaloscypha gabretae and Hyaloscypha gryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots. Mycorrhiza 32, 105–122 (2022).
Google Scholar
Villarreal-Ruiz, L., Anderson, I. C. & Alexander, I. J. Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytol. 164, 183–192 (2004).
Google Scholar
Grelet, G.-A., Johnson, D., Paterson, E., Anderson, I. C. & Alexander, I. J. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol. 182, 359–366 (2009).
Google Scholar
Vohník, M. et al. The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol. 6, 281–292 (2013).
Google Scholar
Vrålstad, T., Schumacher, T. & Taylor, A. F. S. Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol. 153, 143–152 (2002).
Google Scholar
Wang, C. J. K. & Wilcox, H. E. New species of ectendomycorrhizal and pseudomycorrhizal fungi: Phialophora Finlandia, Chloridium paucisporum and Phialocephala Fortinii. Mycologia 77, 951–958 (1985).
Google Scholar
Leopold, D. R. Ericoid fungal diversity: Challenges and opportunities for mycorrhizal research. Fungal Ecol. 24, 114–123 (2016).
Google Scholar
Lacourt, I. et al. Nuclear ribosomal sequence analysis of Oidiodendron: Towards a redefinition of ecologically relevant species. New Phytol. 149, 565–576 (2001).
Google Scholar
Baba, T. & Hirose, D. Slow-growing fungi belonging to the unnamed lineage in Chaetothyriomycetidae form hyphal coils in vital ericaceous rhizodermal cells in vitro. Fungal Biol. 125, 1026–1035 (2021).
Google Scholar
Vohník, M., Pánek, M., Fehrer, J. & Selosse, M.-A. Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales). Mycorrhiza 26, 831–846 (2016).
Google Scholar
Vohník, M. et al. Novel root-fungus symbiosis in ericaceae: Sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to trechisporales. PLoS ONE 7, e39524 (2012).
Google Scholar
Zhang, Y. et al. Root-associated fungi of Vaccinium carlesii in subtropical forests of China: Intra- and inter-annual variability and impacts of human disturbances. Sci. Rep. 6, 22399 (2016).
Google Scholar
Yurgel, S. N., Douglas, G. M., Dusault, A., Percival, D. & Langille, M. G. I. Dissecting community structure in wild blueberry root and soil microbiome. Front. Microbiol. 9, 1187 (2018).
Google Scholar
Zhang, Y., Tang, F., Ni, J., Dong, L. & Sun, L. Diversity of root-associated fungi of Rhododendron simsii in subtropical forests: fungal communities with high resistance to anthropogenic disturbances. J. For. Res. 30, 2321–2330 (2019).
Google Scholar
Li, J. et al. Comparative analysis of rhizosphere microbiomes of Southern Highbush Blueberry (Vaccinium corymbosum L.), Darrow’s blueberry (V. darrowii Camp), and Rabbiteye blueberry (V. virgatum Aiton). Front. Microbiol. 11, 370 (2020).
Google Scholar
Morvan, S., Meglouli, H., Lounès-Hadj Sahraoui, A. & Hijri, M. Into the wild blueberry (Vaccinium angustifolium) rhizosphere microbiota. Environ. Microbiol. 22, 3803–3822 (2020).
Google Scholar
Petrini, O. Endophytic fungi in British Ericaceae: A preliminary study. Trans. Br. Mycol. Soc. 83, 510–512 (1984).
Google Scholar
Li, Z.-J., Shen, X.-Y. & Hou, C.-L. Fungal endophytes of South China blueberry (Vaccinium dunalianum var. urophyllum). Lett. Appl. Microbiol. 63, 482–487 (2016).
Google Scholar
Koudelková, B., Jarošová, R. & Koukol, O. Are endophytic fungi from Rhododendron tomentosum preadapted for its essential oil?. Biochem. Syst. Ecol. 75, 21–26 (2017).
Google Scholar
Martino, E. et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 217, 1213–1229 (2018).
Google Scholar
Schlegel, M. et al. Globally distributed root endophyte Phialocephala subalpina links pathogenic and saprophytic lifestyles. BMC Genomics 17, 1015 (2016).
Google Scholar
Fang, K. et al. Tissue-specific and geographical variation in endophytic fungi of Ageratina adenophora and fungal associations with the environment. Front. Microbiol. 10, 2919 (2019).
Google Scholar
Bálint, M. et al. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS ONE 8, e53987 (2013).
Google Scholar
Toju, H., Kurokawa, H. & Kenta, T. Factors influencing leaf- and root-associated communities of bacteria and fungi across 33 plant orders in a grassland. Front. Microbiol. 10, 241 (2019).
Google Scholar
Vasquez, P. et al. First report of blueberry botrytis blight in Buenos Aires, Entre Ríos, and Córdoba, Argentina. Plant Dis. 91, 639–639 (2007).
Google Scholar
Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20, 124–140 (2018).
Google Scholar
Grünig, C. R., Queloz, V., Sieber, T. N. & Holdenrieder, O. Dark septate endophytes (DSE) of the Phialocephala fortinii s.l.—Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany 86, 1355–1369 (2008).
Google Scholar
Vohník, M. Ericoid mycorrhizal symbiosis: Theoretical background and methods for its comprehensive investigation. Mycorrhiza 30, 671–695 (2020).
Google Scholar
Knapp, D. G. et al. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci. Rep. 8, 6321 (2018).
Google Scholar
Yang, Y. et al. Genomic characteristics and comparative genomics analysis of the endophytic fungus Sarocladium brachiariae. BMC Genomics 20, 782 (2019).
Google Scholar
Alibrandi, P., Schnell, S., Perotto, S. & Cardinale, M. Diversity and structure of the endophytic bacterial communities associated with three terrestrial orchid species as revealed by 16S rRNA gene metabarcoding. Front. Microbiol. 11, 604964 (2020).
Google Scholar
Hodgson, S. et al. Vertical transmission of fungal endophytes is widespread in forbs. Ecol. Evol. 4, 1199–1208 (2014).
Google Scholar
Selosse, M.-A., Schneider-Maunoury, L. & Martos, F. Time to re-think fungal ecology? Fungal ecological niches are often prejudged. New Phytol. 217, 968–972 (2018).
Google Scholar
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinforma. Oxf. Engl. 30, 614–620 (2014).
Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
Google Scholar
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinforma. Oxf. Engl. 26, 2460–2461 (2010).
Google Scholar
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
Google Scholar
Abarenkov, K. et al. Full UNITE+INSD dataset for Fungi. (2021) https://doi.org/10.15156/BIO/1281531.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Google Scholar
Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinforma. Oxf. Engl. 19, 1572–1574 (2003).
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
Google Scholar
Wei, X., Chen, J., Zhang, C. & Pan, D. A New Oidiodendron maius Strain Isolated from Rhododendron fortunei and its Effects on Nitrogen Uptake and Plant Growth. Front. Microbiol. 7 (2016).
Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821 (2020).
Google Scholar